Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa lahat ng iyong mga katanungan kasama ang isang aktibong komunidad. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa mga bihasang propesyonal sa aming komprehensibong Q&A platform. Kumuha ng agarang at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

Find the length of the line segment determined by the given pair of points. P(2,-2) and Q(-1,2)

Sagot :

Please check the picture to understand the solution better.

The Pythagorean Theorem which applies to right triangles states that:
[tex]a^2+b^2=c^2[/tex]
a and b are the lengths of the legs while c is the length of the hypotenuse.

In the Cartesian plane they are:
[tex]x_a-x_b=a[/tex]
[tex]y_a-y_b=b[/tex]

The points are have coordinates [tex](x,y)[/tex]

This means
 [tex](x_a,y_a)[/tex] are the coordinates of the first point 
and [tex](x_b,y_b)[/tex] are the coordinates of the second

So in the problem:
[tex](x_a,y_a)=(2,-2)[/tex] which are the coordinates of P
[tex](x_b,y_b)=(-1,2)[/tex] which are the coordinates of P

We substitute this to the Pythagorean theorem
[tex](2-(-1))^2+(-2-2)^2=c^2[/tex]
[tex]3^2+(-4)^2=c^2[/tex]
[tex]9+16=c^2 \\ 25=c^2 \\ 5=c[/tex]

The triangle that will be formed has a very common Pythagorean triple which is (3,4,5).

The length of the hypotenuse (or any length of a side) cannot be less than or equal to 0 so it cannot be -5.

Therefore the length of the line segment when you connect the two points is 5.

View image mlcparra16