Maligayang pagdating sa Imhr.ca, ang pinakamahusay na platform ng tanong at sagot para sa mabilis at tumpak na mga sagot. Kumuha ng detalyadong mga sagot sa iyong mga tanong mula sa isang komunidad ng mga eksperto na dedikado sa pagbibigay ng eksaktong impormasyon. Kumuha ng detalyado at eksaktong sagot sa iyong mga tanong mula sa dedikadong komunidad ng mga eksperto sa aming Q&A platform.

Find the interval where the fiction defined by f(x)=x³-6x²+9x+1 is increasing,decreasing

Sagot :

Differentiate f(x) = x³-6x²+9x+1
[tex] \frac{d}{dx} ( x^{3} -6x ^{2} +9x+1)[/tex]

Solution for each term:
[tex] \frac{d}{dx} (x^{3} ) = (3)x^{3-1} = 3 x^{2} [/tex]

[tex] \frac{d}{dx}(-6(2)x ^{2-1} ) = -12x[/tex]

[tex] \frac{d}{dx} (9(1)x^{1-1} ) = 9[/tex]

[tex] \frac{d}{dx} (1) = 0[/tex]

Simplify:
f(x)=(3x²-12x+9) ⇒ 3 (x²-4x+3) ⇒ 3(x-3)(x-1)

Stationary Points:
x-3 = 0               x-1 = 0
x = 3                  x = 1

INTERVALS:
(-∞,1)   (1,3)   (3,∞)

Increasing at intervals (-∞,1) and (3,∞)

Decreasing at interval (1,3)

(Note:  It's easier to solve for the intervals with derivatives than by factoring or zero theorem for the given function, avoiding the irrational complex numbers not necessary to what you required.)