Ang Imhr.ca ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Tuklasin ang mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

50.
In the adjoining figure, side BC of triangle
ABC is extended to D.
What is value of aº?
A. 20
17
C.
25
B.
6y
2y0
3y0
D.20
B
C
D


50In The Adjoining Figure Side BC Of TriangleABC Is Extended To DWhat Is Value Of AºA 2017C25B6y2y03y0D20BCD class=

Sagot :

TRIANGLE

[tex]\normalsize{\blue{\overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}}}[/tex]

[tex]\rm{\underline{QUESTION:}}[/tex]

50.) In the adjoining figure, side BC of triangle ABC is extended to D. What is value of aº?

  • A. 20
  • B. 17
  • C. 25
  • D. 20

[tex]\\[/tex]

[tex]\rm{\underline{SOLUTION:}}[/tex]

First of all, we know that, <ACB + <ACD = 180º

  • [tex]\rm{\rightarrow 6y^{\circ} + 3y^{\circ}= 180^{\circ}}[/tex]

  • [tex]\rm{\rightarrow 9y^{\circ}= 180^{\circ}}[/tex]

  • [tex]\rm{\rightarrow \dfrac{9y^{\circ}}{9} = \dfrac{180^{\circ}}{9} }[/tex]

  • [tex]\rm{\rightarrow y^{\circ} = 20^{\circ}}[/tex]

[tex]\\[/tex]

Therefore:

  • [tex]\rm{ < ACB = 6y^{\circ} = 120^{\circ}}[/tex]
  • [tex]\rm{ < ABC = 2y^{\circ} = 40^{\circ}}[/tex]
  • [tex]\rm{ < ACD = 3y^{\circ} = 60^{\circ}}[/tex]

Now that we have the values, we can solve for aº:

  • [tex]\rm{ a^{\circ} = 180^{\circ} -(40^{\circ} + 120^{\circ} )}[/tex]
  • [tex]\rm{ a^{\circ} = 180^{\circ} - 160^{\circ} }[/tex]
  • [tex]\rm{ a^{\circ} = \boxed{\green{20^{\circ} }}}[/tex]

[tex]\\[/tex]

Hence, the answer to your question would be option A. 20 or D. 20. You can answer any of them since they are both 20.

[tex]\normalsize{\blue{\overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}}}[/tex]

[tex]\large{\boxed{\tt{\blue{06/12/2024}}}}[/tex]

Answer:

a.20

Step-by-step explanation:

a.20 or d.20 solution nasa photo

View image richasaIipdan