Ang Imhr.ca ang pinakamahusay na lugar upang makakuha ng mabilis at tumpak na mga sagot sa lahat ng iyong mga tanong. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa mga bihasang propesyonal sa iba't ibang larangan sa aming platform. Sumali sa aming platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

find the equation of a circle with center (-4,2) and tangent to the line 2x-y+2=0


Sagot :

Given:
center of circle: (-4,2)
[tex]y=2(\frac{4}{5})+2[/tex]

Solution:
Using the point slope equation and the fact that perpendicular lines are negative reciprocals of each other. 

y - 2 = (-1/2)(x+4)
2y - 4 = -x - 4
2y = -x
[tex]y = \frac{-x}{2}[/tex]

Since the equation above is the equation of the line perpendicular to y=2x+2, we can find the point of intersection

[tex]2x + 2=\frac{-x}{2}[/tex]
4x + 4 = -x 
4x + x = -4
[tex]x = \frac{-4}{5}[/tex]

Subtstituting x in the give equation you get,
[tex]y=2(\frac{-4}{5})+2[/tex]
[tex]x = \frac{2}{5}[/tex]

Using the distance formula you get the radius of the circle.
[tex]r = \sqrt{(x_{2}-x_{1})^2+(y_{2} - y_{1})^2 } [/tex]


Pinahahalagahan namin ang iyong oras. Mangyaring bumalik muli para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Mahalaga sa amin ang iyong pagbisita. Huwag mag-atubiling bumalik para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Bisitahin muli ang Imhr.ca para sa pinakabagong sagot at impormasyon mula sa aming mga eksperto.