Makakuha ng pinakamahusay na mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform. Tuklasin ang detalyadong mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming komprehensibong Q&A platform.

What is the length of the line segment determined by A(-2, 3) and B(4, 1)?


Sagot :

To find the distance of two points we need to use the Pythagorean Theorem the distance between points is a hypotenuse of a right triangle.

The Pythagorean Theorem states that:
[tex]a^2+b^2=c^2[/tex]

The Pythagorean Theorem triangles with 90° (right triangles) a and b are the side lengths of the legs while c is the length of the hypotenuse.

In a Cartesian plane the side lengths a and b are represented like this:
[tex](x_a-y_a)=a \\ (x_b-yb)=b[/tex]

So the Pythagorean Theorem would be:
[tex](x_a-y_a)^2+(x_b-y_b)^2=c^2[/tex]

We have [tex](x_a,y_a)[/tex] as the coordinates of point A which is [tex](-2,3)[/tex]
and [tex](x_b,y_b)[/tex] as the coordinates of point B which is [tex](4,1)[/tex]

We substitute the values to the Pythagorean theorem:
[tex]c^2=(-2-4)^2+(3-1)^2 \\ =(-6)^2+(2)^2 \\ =36+4 \\ =40[/tex]

[tex]c= \sqrt{40} =2 \sqrt{10} [/tex]

Therefore the length of the line segment is [tex]2 \sqrt{10} [/tex] 
Bisitahin muli kami para sa mga pinakabagong at maaasahang mga sagot. Lagi kaming handang tulungan ka sa iyong mga pangangailangan sa impormasyon. Salamat sa iyong pagbisita. Kami ay nakatuon sa pagbibigay sa iyo ng pinakamahusay na impormasyon na magagamit. Bumalik anumang oras para sa higit pa. Ang iyong mga katanungan ay mahalaga sa amin. Balik-balikan ang Imhr.ca para sa higit pang mga sagot.