Tuklasin ang mga sagot sa iyong mga katanungan nang madali sa Imhr.ca, ang mapagkakatiwalaang Q&A platform. Tuklasin ang libu-libong tanong at sagot mula sa mga eksperto sa iba't ibang larangan sa aming Q&A platform. Tuklasin ang komprehensibong mga solusyon sa iyong mga tanong mula sa isang malawak na hanay ng mga propesyonal sa aming madaling gamitin na platform.
Sagot :
In order to know the distance between two points we have to perform the Pythagorean Theorem which is:
[tex]a^2+b^2=c^2[/tex]
Where a and b are the legs of the triangle and c is the hypotenuse (the longest side). Take note that this theorem only works on right triangles. We use this theorem since the distance between two points is the altitude of the hypotenuse.
Since we are given two points we let the coordinates be as follows:
[tex](x_a,y_a)=(1,3) \\ (x_b,y_b)=(-5,-5)[/tex]
The Pythagorean Theorem in the Cartesian plane is :
[tex](x_a-x_b)^2+(y_a-y_b)^2=c^2[/tex]
Without loss of Generality (WLOG) we let the leg a's altitude be the horizontal length and leg b's be the vertical length. Substituting the values we get:
[tex]c^2=(1-(-5))^2+(3-(-5))^2 \\ =6^2+8^2 \\ =36+64 \\ =100[/tex]
The altitude of c would be the square root of 100 which is either positive 10 or negative 10 so since the distance between two points can never be negative their distance is 10.
[tex]a^2+b^2=c^2[/tex]
Where a and b are the legs of the triangle and c is the hypotenuse (the longest side). Take note that this theorem only works on right triangles. We use this theorem since the distance between two points is the altitude of the hypotenuse.
Since we are given two points we let the coordinates be as follows:
[tex](x_a,y_a)=(1,3) \\ (x_b,y_b)=(-5,-5)[/tex]
The Pythagorean Theorem in the Cartesian plane is :
[tex](x_a-x_b)^2+(y_a-y_b)^2=c^2[/tex]
Without loss of Generality (WLOG) we let the leg a's altitude be the horizontal length and leg b's be the vertical length. Substituting the values we get:
[tex]c^2=(1-(-5))^2+(3-(-5))^2 \\ =6^2+8^2 \\ =36+64 \\ =100[/tex]
The altitude of c would be the square root of 100 which is either positive 10 or negative 10 so since the distance between two points can never be negative their distance is 10.

Mahalaga sa amin ang iyong pagbisita. Huwag mag-atubiling bumalik para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Umaasa kaming naging kapaki-pakinabang ang aming mga sagot. Bumalik anumang oras para sa higit pang tumpak na mga sagot at napapanahong impormasyon. Ipinagmamalaki naming magbigay ng sagot dito sa Imhr.ca. Bisitahin muli kami para sa mas marami pang impormasyon.