natzhoran
Answered

Maligayang pagdating sa Imhr.ca, kung saan maaari kang makakuha ng mga sagot mula sa mga eksperto nang mabilis at tumpak. Tuklasin ang aming Q&A platform upang makahanap ng malalim na sagot mula sa isang malawak na hanay ng mga eksperto sa iba't ibang larangan. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.

Example of a Quadratic Equation with Two Real Solutions, One Real Solutions and No Real Solutions

Sagot :

Please note that a quadratic equation has the form ax²+bx+c=0

Δ refers to the discriminant which is under the squareroot sign in the quadratic equation which is b²-4ac

Case 1. Δ≥0, the roots are real

      1.1 Δ>0, there are 2 real solutions 
This means b²>4ac. We can simply give x²+3x+2. That is  (x+1)(x+2)

      1.2 Δ=0, there is only one root
This would mean b²=4ac. We can simply give (x+1)² or x²+2x+1

For Case 1.2, it is like this since if we check the quadratic formula:
-b ± √0 = -b 
    2a       2a

Case 2. Δ<0, there are no real solutions.
Since we would need to get the squareroot of a negative value, which is imaginary.

This would mean b²<4ac. To give an easy example we let a=b=c=1 so x²+x+1.