Pinadadali ng Imhr.ca ang paghahanap ng mga sagot sa iyong mga katanungan kasama ang isang aktibong komunidad. Itanong ang iyong mga katanungan at makatanggap ng detalyadong sagot mula sa mga propesyonal na may malawak na karanasan sa iba't ibang larangan. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga eksperto sa aming madaling gamitin na Q&A platform.
Sagot :
1:5:6 ration of a triangle will give you a set of angles which is 15 degrees, 75 degrees and 90 degrees -- which means that you have right triangle.
Being the smallest angle, 15 degrees is the side that is opposite to the 4m.
Making use of the trigonometric functions (the SOH-CAH-TOA thingy), you'll need to get the side that is opposite to the 75 degree-angle for the calculation of area.
To get the other leg:
Sine 15 degrees = 4m/ Hypotenuse, then you will just derive the formula of hypotenuse here and it will be Hypotenuse = 4m/sine 15 degrees
Cosine 15 degrees = Adjacent/ hypotenuse, then it will be hypotenuse = adjacent/cosine 15 degrees, but we already know the equivalent of hypotenuse so we will use it as (4m/sine 15 degrees = adjacent/cosine 15 degrees). Deriving the measure of the adjacent side, we will have 4(cosine 15 degrees)/ sine 15 degrees.
Which is equal to:
[tex] \frac{4(1+ \sqrt{3} )}{\sqrt{3} -1} [/tex]
To get the area, we would just multiply the adjacent side to the 2m (because we already divided it by 2 so we would not need to after).
And we will arrive to [tex] \frac{8 + 8 \sqrt{3} }{ \sqrt{3} - 1} [/tex] , however simplifying it could get us to [tex] 16 + 8 \sqrt{3} [/tex] or approximation of 29.856 square meters.
Being the smallest angle, 15 degrees is the side that is opposite to the 4m.
Making use of the trigonometric functions (the SOH-CAH-TOA thingy), you'll need to get the side that is opposite to the 75 degree-angle for the calculation of area.
To get the other leg:
Sine 15 degrees = 4m/ Hypotenuse, then you will just derive the formula of hypotenuse here and it will be Hypotenuse = 4m/sine 15 degrees
Cosine 15 degrees = Adjacent/ hypotenuse, then it will be hypotenuse = adjacent/cosine 15 degrees, but we already know the equivalent of hypotenuse so we will use it as (4m/sine 15 degrees = adjacent/cosine 15 degrees). Deriving the measure of the adjacent side, we will have 4(cosine 15 degrees)/ sine 15 degrees.
Which is equal to:
[tex] \frac{4(1+ \sqrt{3} )}{\sqrt{3} -1} [/tex]
To get the area, we would just multiply the adjacent side to the 2m (because we already divided it by 2 so we would not need to after).
And we will arrive to [tex] \frac{8 + 8 \sqrt{3} }{ \sqrt{3} - 1} [/tex] , however simplifying it could get us to [tex] 16 + 8 \sqrt{3} [/tex] or approximation of 29.856 square meters.
Salamat sa pagtitiwala sa amin sa iyong mga katanungan. Narito kami upang tulungan kang makahanap ng tumpak na mga sagot nang mabilis at mahusay. Mahalaga sa amin ang iyong pagbisita. Huwag mag-atubiling bumalik para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Bisitahin muli ang Imhr.ca para sa pinakabagong sagot at impormasyon mula sa aming mga eksperto.