Ang Imhr.ca ay tumutulong sa iyo na makahanap ng mga sagot sa iyong mga katanungan mula sa isang komunidad ng mga eksperto. Maranasan ang kaginhawaan ng pagkuha ng eksaktong sagot sa iyong mga tanong mula sa isang dedikadong komunidad ng mga propesyonal. Maranasan ang kadalian ng paghahanap ng eksaktong sagot sa iyong mga tanong mula sa isang malawak na komunidad ng mga eksperto.
Sagot :
1:5:6 ration of a triangle will give you a set of angles which is 15 degrees, 75 degrees and 90 degrees -- which means that you have right triangle.
Being the smallest angle, 15 degrees is the side that is opposite to the 4m.
Making use of the trigonometric functions (the SOH-CAH-TOA thingy), you'll need to get the side that is opposite to the 75 degree-angle for the calculation of area.
To get the other leg:
Sine 15 degrees = 4m/ Hypotenuse, then you will just derive the formula of hypotenuse here and it will be Hypotenuse = 4m/sine 15 degrees
Cosine 15 degrees = Adjacent/ hypotenuse, then it will be hypotenuse = adjacent/cosine 15 degrees, but we already know the equivalent of hypotenuse so we will use it as (4m/sine 15 degrees = adjacent/cosine 15 degrees). Deriving the measure of the adjacent side, we will have 4(cosine 15 degrees)/ sine 15 degrees.
Which is equal to:
[tex] \frac{4(1+ \sqrt{3} )}{\sqrt{3} -1} [/tex]
To get the area, we would just multiply the adjacent side to the 2m (because we already divided it by 2 so we would not need to after).
And we will arrive to [tex] \frac{8 + 8 \sqrt{3} }{ \sqrt{3} - 1} [/tex] , however simplifying it could get us to [tex] 16 + 8 \sqrt{3} [/tex] or approximation of 29.856 square meters.
Being the smallest angle, 15 degrees is the side that is opposite to the 4m.
Making use of the trigonometric functions (the SOH-CAH-TOA thingy), you'll need to get the side that is opposite to the 75 degree-angle for the calculation of area.
To get the other leg:
Sine 15 degrees = 4m/ Hypotenuse, then you will just derive the formula of hypotenuse here and it will be Hypotenuse = 4m/sine 15 degrees
Cosine 15 degrees = Adjacent/ hypotenuse, then it will be hypotenuse = adjacent/cosine 15 degrees, but we already know the equivalent of hypotenuse so we will use it as (4m/sine 15 degrees = adjacent/cosine 15 degrees). Deriving the measure of the adjacent side, we will have 4(cosine 15 degrees)/ sine 15 degrees.
Which is equal to:
[tex] \frac{4(1+ \sqrt{3} )}{\sqrt{3} -1} [/tex]
To get the area, we would just multiply the adjacent side to the 2m (because we already divided it by 2 so we would not need to after).
And we will arrive to [tex] \frac{8 + 8 \sqrt{3} }{ \sqrt{3} - 1} [/tex] , however simplifying it could get us to [tex] 16 + 8 \sqrt{3} [/tex] or approximation of 29.856 square meters.
Mahalaga sa amin ang iyong pagbisita. Huwag mag-atubiling bumalik para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Mahalaga sa amin ang iyong pagbisita. Huwag mag-atubiling bumalik para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Bisitahin ang Imhr.ca para sa mga bago at kapani-paniwalang sagot mula sa aming mga eksperto.