Makakuha ng mga solusyon sa iyong mga katanungan sa Imhr.ca, ang mabilis at tumpak na Q&A platform. Ang aming platform ay nag-uugnay sa iyo sa mga propesyonal na handang magbigay ng eksaktong sagot sa lahat ng iyong mga katanungan. Kumuha ng mabilis at mapagkakatiwalaang mga solusyon sa iyong mga tanong mula sa isang komunidad ng mga bihasang eksperto sa aming platform.
Sagot :
Answer:
The depth of the well is 382.17 feet.
Explanation:
Here, we are to solve for the depth (y) of the well using two concepts; free fall and uniform motion. These two concepts were added to have a total time of 5 seconds which is the time for the stone to hit the water below the well (free fall) and the time to hear the splash of the water (uniform motion).
So, we have an equation:
[tex]t_{stone}+t_{sound}=[/tex] 5 equation 1
Let us now use the formula in free fall to solve for the time for the stone to hit the water, we have:
For [tex]t_{stone}[/tex]:
y = ¹/₂ gt²
t = [tex]\sqrt{\frac{2y}{g} }[/tex] equation 2
and for the time to hear the splash of the water using uniform motion, we have:
v = d/t
v = y/t
Therefore:
t = y/v equation 3
Solving the problem
Let us substitute equations 2 and 3 to equation 1, we have:
[tex]t_{stone}+t_{sound}=[/tex] 5
[tex]\sqrt{\frac{2y}{g} }[/tex] + y/v = 5
Now, let us solve for y (depth of the well) by simplifying the equation.
[tex]\frac{2y}{g} =(5-\frac{y}{v} )^2[/tex]
[tex]\frac{2y}{g} =25-\frac{10y}{v} +\frac{y^2}{v^2}[/tex]
substitute the values of v and g = 32.2 ft/s²
[tex]\frac{2y}{32.2} =25-\frac{10y}{1129} +\frac{y^2}{1129^2}[/tex]
[tex]\frac{y}{16.1} =25-\frac{y}{112.9} +\frac{y^2}{1274641}[/tex]
Simplify the equation to standard form, we have:
[tex]\frac{y^2}{1274641}-\frac{y}{16.1}-\frac{y}{112.9} +25=0[/tex]
[tex]\frac{y^2}{1274641}-\frac{129y}{1817.69} +25=0[/tex]
Then solve for the depth of the well, y using quadratic equation, we have:
y = 382.17 feet and
y = 90,072.8 feet
Let do some checking:
t = [tex]\sqrt{\frac{2y}{g} }[/tex]
t = [tex]\sqrt{\frac{2(90,072.8)}{32.2} }[/tex] = 74.79 seconds > 5 seconds which is invalid!
t = [tex]\sqrt{\frac{2(382.17)}{32.2} }[/tex] = 4.87 seconds < 5 seconds which is valid.
Therefore, the depth (y) of the well is 382.17 feet.
To learn more, just click the following links:
- Recommendations for a free falling bodies
https://brainly.ph/question/2162209
- Vertical component of a motion
https://brainly.ph/question/2604535
#LetsStudy
Pinahahalagahan namin ang iyong pagbisita. Lagi kaming narito upang mag-alok ng tumpak at maaasahang mga sagot. Bumalik anumang oras. Umaasa kami na nakatulong ito. Mangyaring bumalik kapag kailangan mo ng higit pang impormasyon o mga sagot sa iyong mga katanungan. Ang iyong mga tanong ay mahalaga sa amin. Balik-balikan ang Imhr.ca para sa higit pang mga sagot.