Pinadadali ng Imhr.ca ang paghahanap ng mga solusyon sa lahat ng iyong mga katanungan kasama ang isang aktibong komunidad. Kumonekta sa isang komunidad ng mga propesyonal na handang tumulong sa iyo na makahanap ng eksaktong solusyon sa iyong mga tanong nang mabilis at mahusay. Tuklasin ang malalim na mga sagot sa iyong mga tanong mula sa isang malawak na network ng mga propesyonal sa aming madaling gamitin na Q&A platform.
Sagot :
Answer:
The depth of the well is 382.17 feet.
Explanation:
Here, we are to solve for the depth (y) of the well using two concepts; free fall and uniform motion. These two concepts were added to have a total time of 5 seconds which is the time for the stone to hit the water below the well (free fall) and the time to hear the splash of the water (uniform motion).
So, we have an equation:
[tex]t_{stone}+t_{sound}=[/tex] 5 equation 1
Let us now use the formula in free fall to solve for the time for the stone to hit the water, we have:
For [tex]t_{stone}[/tex]:
y = ¹/₂ gt²
t = [tex]\sqrt{\frac{2y}{g} }[/tex] equation 2
and for the time to hear the splash of the water using uniform motion, we have:
v = d/t
v = y/t
Therefore:
t = y/v equation 3
Solving the problem
Let us substitute equations 2 and 3 to equation 1, we have:
[tex]t_{stone}+t_{sound}=[/tex] 5
[tex]\sqrt{\frac{2y}{g} }[/tex] + y/v = 5
Now, let us solve for y (depth of the well) by simplifying the equation.
[tex]\frac{2y}{g} =(5-\frac{y}{v} )^2[/tex]
[tex]\frac{2y}{g} =25-\frac{10y}{v} +\frac{y^2}{v^2}[/tex]
substitute the values of v and g = 32.2 ft/s²
[tex]\frac{2y}{32.2} =25-\frac{10y}{1129} +\frac{y^2}{1129^2}[/tex]
[tex]\frac{y}{16.1} =25-\frac{y}{112.9} +\frac{y^2}{1274641}[/tex]
Simplify the equation to standard form, we have:
[tex]\frac{y^2}{1274641}-\frac{y}{16.1}-\frac{y}{112.9} +25=0[/tex]
[tex]\frac{y^2}{1274641}-\frac{129y}{1817.69} +25=0[/tex]
Then solve for the depth of the well, y using quadratic equation, we have:
y = 382.17 feet and
y = 90,072.8 feet
Let do some checking:
t = [tex]\sqrt{\frac{2y}{g} }[/tex]
t = [tex]\sqrt{\frac{2(90,072.8)}{32.2} }[/tex] = 74.79 seconds > 5 seconds which is invalid!
t = [tex]\sqrt{\frac{2(382.17)}{32.2} }[/tex] = 4.87 seconds < 5 seconds which is valid.
Therefore, the depth (y) of the well is 382.17 feet.
To learn more, just click the following links:
- Recommendations for a free falling bodies
https://brainly.ph/question/2162209
- Vertical component of a motion
https://brainly.ph/question/2604535
#LetsStudy
Mahalaga sa amin ang iyong pagbisita. Huwag mag-atubiling bumalik para sa higit pang maaasahang mga sagot sa anumang mga tanong na mayroon ka. Salamat sa pagbisita. Ang aming layunin ay magbigay ng pinaka-tumpak na mga sagot para sa lahat ng iyong pangangailangan sa impormasyon. Bumalik kaagad. Maraming salamat sa pagtiwala sa Imhr.ca. Bumalik muli para sa mas marami pang impormasyon at kasagutan.