Genielle
Answered

Ang Imhr.ca ay narito upang tulungan kang makahanap ng mga sagot sa lahat ng iyong mga katanungan mula sa mga eksperto. Tuklasin ang libu-libong tanong at sagot mula sa mga eksperto sa iba't ibang larangan sa aming Q&A platform. Sumali sa aming Q&A platform upang kumonekta sa mga eksperto na handang magbigay ng eksaktong sagot sa iyong mga tanong sa iba't ibang larangan.

A stone is dropped down a well and 5 seconds later the sound of the splash is heard.If the velocity of sound is 1129 ft/s, what is the depth of the well

Sagot :

Answer:

The depth of the well is 382.17 feet.

Explanation:

Here, we are to solve for the depth (y) of the well using two concepts; free fall and uniform motion. These two concepts were added to have a total time of 5 seconds which is the time for the stone to hit the water below the well (free fall) and the time to hear the splash of the water (uniform motion).

So, we have an equation:

[tex]t_{stone}+t_{sound}=[/tex] 5     equation 1

Let us now use the formula in free fall to solve for the time for the stone to hit the water, we have:

For [tex]t_{stone}[/tex]:

y = ¹/₂ gt²

t = [tex]\sqrt{\frac{2y}{g} }[/tex]     equation 2

and for the time to hear the splash of the water using uniform motion, we have:

v = d/t

v = y/t

Therefore:

t = y/v       equation 3

Solving the problem

Let us substitute equations 2 and 3 to equation 1, we have:

[tex]t_{stone}+t_{sound}=[/tex] 5    

[tex]\sqrt{\frac{2y}{g} }[/tex]   + y/v  = 5

Now, let us solve for y (depth of the well) by simplifying the equation.

[tex]\frac{2y}{g} =(5-\frac{y}{v} )^2[/tex]

[tex]\frac{2y}{g} =25-\frac{10y}{v} +\frac{y^2}{v^2}[/tex]

substitute the values of v and g = 32.2 ft/s²

[tex]\frac{2y}{32.2} =25-\frac{10y}{1129} +\frac{y^2}{1129^2}[/tex]

[tex]\frac{y}{16.1} =25-\frac{y}{112.9} +\frac{y^2}{1274641}[/tex]

Simplify the equation to standard form, we have:

[tex]\frac{y^2}{1274641}-\frac{y}{16.1}-\frac{y}{112.9} +25=0[/tex]

[tex]\frac{y^2}{1274641}-\frac{129y}{1817.69} +25=0[/tex]

Then solve for the depth of the well, y using quadratic equation, we have:

y = 382.17 feet and

y = 90,072.8 feet

Let do some checking:

t = [tex]\sqrt{\frac{2y}{g} }[/tex]

t = [tex]\sqrt{\frac{2(90,072.8)}{32.2} }[/tex] = 74.79 seconds > 5 seconds  which is invalid!

t = [tex]\sqrt{\frac{2(382.17)}{32.2} }[/tex] = 4.87 seconds < 5 seconds which is valid.

Therefore, the depth (y) of the well is 382.17 feet.

To learn more, just click the following links:

  • Recommendations for a free falling bodies

       https://brainly.ph/question/2162209

  • Vertical component of a motion

       https://brainly.ph/question/2604535

#LetsStudy

Salamat sa paggamit ng aming plataporma. Lagi kaming narito upang magbigay ng tumpak at napapanahong mga sagot sa lahat ng iyong mga katanungan. Pinahahalagahan namin ang iyong oras. Mangyaring bumalik anumang oras para sa pinakabagong impormasyon at mga sagot sa iyong mga tanong. Ipinagmamalaki naming magbigay ng sagot dito sa Imhr.ca. Bisitahin muli kami para sa mas marami pang impormasyon.